Quasi-linear SPDEs in divergence form
نویسندگان
چکیده
منابع مشابه
On Divergence Form SPDEs with VMO Coefficients
We present several results on solvability in Sobolev spaces W 1 p of SPDEs in divergence form in the whole space.
متن کاملOn Divergence Form Spdes with Growing
We consider divergence form uniformly parabolic SPDEs with bounded and measurable leading coefficients and possibly growing lower-order coefficients in the deterministic part of the equations. We look for solutions which are summable to the second power with respect to the usual Lebesgue measure along with their first derivatives with respect to the spatial variable.
متن کاملQuasi-linear Parabolic Systems in Divergence Form with Weak Monotonicity
We consider the initial and boundary value problem for the quasi-linear parabolic system ∂u ∂t − div σ (x, t, u(x, t),Du(x, t)) = f on × (0, T ), u(x, t) = 0 on ∂ × (0, T ), u(x, 0) = u0(x) on for a function u : × [0, T ) → R with T > 0. Here, f ∈ Lp(0, T ;W−1,p ( ;Rm)) for some p ∈ (2n/(n + 2),∞), and u0 ∈ L2( ;Rm). We prove existence of a weak solution under classical regularity, growth, and ...
متن کاملOn Divergence Form Spdes with Vmo Coefficients in a Half Space
We extend several known results on solvability in the Sobolev spaces W 1 p , p ∈ [2,∞), of SPDEs in divergence form in R d + to equations having coefficients which are discontinuous in the space variable.
متن کاملAn Lp-theory for non-divergence form SPDEs driven by Lévy processes
In this paper we present an Lp-theory for a class of stochastic partial differential equations (SPDEs in abbreviation) driven by Lévy processes. Existence and uniqueness of solutions in Sobolev spaces are obtained. The number of derivatives of the solution can be any real number, and the coefficients of SPDEs under consideration are random functions depending on time and space variables.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastics and Partial Differential Equations: Analysis and Computations
سال: 2018
ISSN: 2194-0401,2194-041X
DOI: 10.1007/s40072-018-0122-0